Unlocking innovation in Aerospace and Defense

Shorten aircraft design cycles with ESTECO’s digital engineering solutions for collaboration, simulation data management and multidisciplinary design optimization.


ESTECO VOLTA: the game-changer for SPDM & collaborative Design Optimization

Listen to a 30-minute deep dive into our software solution VOLTA SPDM and explore how to enhance your product performance.

Filter by type and industry

All resources

Showing 51 - 60 of 121 resources

White paper
A new collaborative MDO strategy for improving vehicle design at Ford Motor Company
The role of innovation in the automotive industry has emerged as a key factor, with companies shifting their revenues from well-established models to new ones. This white paper illustrates how Ford Motor Company achieved streamlined, multi-user design process management by expanding its Multidisciplinary Design Optimization (MDO) approach at enterprise level with the ESTECO technology. Specifically, the deployment of the ESTECO platform for Simulation Process and Data Management (SPDM) made it possible for Ford engineers to: process and generate large quantities of designs very quickly, assure the immediate impact of results on vehicle design from the earliest design stages, provide a wealth of data from which several useful design alternatives could be explored.
ESTECO Technology: autonomous design space exploration
Whether you need to start understanding your engineering problem or you work under strict timelines, you can embrace our AI-based Autonomous Optimization approach and focus on the improvement you want to reach without any setting required.
Success story
Best performance of blast furnace with material charge optimization
Using modeFRONTIER coupled with Rocky DEM to design a better deflector while saving up to 130 hours of computational time The Arvedi Group turned to the University of Trieste to find a solution to the uneven material distribution inside the hopper of the blast furnace in Trieste, Italy. The Mechanical Engineering Department investigated the problem and used modeFRONTIER to optimize the design of a new deflector ensuring a better distribution of the materials. Exploiting the ESTECO integration and process automation technology they coupled modeFRONTIER with Rocky DEM software to accelerate the simulation process of the material distribution. Using the proprietary algorithms available in modeFRONTIER, they were also able to find the optimal design for a new deflector. ## Challenge The project concerned the charging process of coke coal and iron ore inside the hopper. The different materials formed piles and pitches, leading to a lower performance of the plant. The uneven material distribution inside the hopper caused variations in the temperature profile, gas flow, and gas composition. To solve this problem modeFRONTIER was coupled with Rocky DEM to get a better understanding of materials behavior and optimize the design of the deflector. The integration with modeFRONTIER also allowed to meet the time constraints, reducing the computational time for each simulation. ## Solution This project was developed in two phases. The first phase concerned the calibration of Rocky DEM parameters and the simulation of hopper charge. The second phase consisted in optimizing the geometry of a new deflector for the charging process.For the calibration process, they used the parameters of Discrete Element Method as inputs in modeFRONTIER, such as particle- particle static friction and rolling resistance. The repose angle of simulated material was used as output. For the device optimization, a sensitivity analysis with Uniform Latin Hypercube allowed to run 90 designs and identify the most important design variables. Engineers then optimized three different geometries, taking these geometrical variables as inputs. The outputs were based on the material distribution, calculated by virtually splitting the hopper into 12 sectors and performing statistical analysis on the particles found in each. These values were used to define the two objectives and the constraints of the optimization. They used the ESTECO proprietary pilOPT algorithm to run the three optimization studies. Thanks to the autonomous mode they could evaluate more than 1000 designs in just a few weeks, without having to set any parameters and with remarkable benefits in terms of time. Benefits Thanks to a user-friendly graphical user interface, modeFRONTIER helped automate the simulation process. Without modeFRONTIER, engineers would have had to manually change the geometry of the deflector for every simulation, with significant waste of time. With modeFRONTIER they were able to save up to 130 hours of computational time. Finally, by automating the process, design engineers could launch the optimization and avoid the painstaking process of manually combining the output from multiple applications.
modeFRONTIER Planner: the new optimization experience
Perfect your design by choosing among a complete set of intelligent algorithms. With the modeFRONTIER Planner modular environment you can create your DOE, RSM-based and optimization studies in an assisted way and focus on your engineering goal.
Success story
IVECO S-WAY truck: perfecting cab design to maximize driving comfort
IVECO relies on ESTECO technology to innovate its simulation-driven product development process. IVECO engineers combine the use of CAD and CAE solvers within modeFRONTIER workflow to automatically execute parametric simulations across a wide spectrum of disciplines: structural calculation (crash, durability, strength), fluid dynamics, NVH (Noise, Vibration, Harshness) and vehicle dynamics. On top of the automated simulation process, they apply optimization algorithms to achieve better vehicle designs with increased performance at reduced production costs. ## Challenge The IVECO S-WAY is a complete transport solution which provides excellent life on board conditions to drivers. With a brand-new cab designed to enhance aerodynamic performance and increase fuel efficiency, engineers at IVECO had to completely rethink the suspension system to improve the comfort standard level. In fact, one of the main challenges of the project was to evaluate the cab comfort before the construction of any prototype. Consequently, they made use of multi-body simulation and optimization techniques to verify the overall behavior of the cab by defining the correct set of stiffness and damping parameters for the suspension elastic components. Solution A 3D truck model was generated in MSC Adams/Car to simulate the behavior of mechanical components (cab body, suspension, actuator, tractor and trailer frame) on different proving grounds as pave, patched asphalt and speed bump. The simulation model was directly integrated in modeFRONTIER workflow to automatically tune the suspension properties, with the aim of optimizing output parameters related to vibration, cab movements and comfort. An initial Design of Experiments (DOE) analysis allowed to identify the correlation between design variables and system responses, with the aim of simplifying the multi-body simulation model to be further validated in the optimization process. Finally, the MOGA-II algorithm, available in modeFRONTIER, enabled engineers to pick the right designs with minimized cab vibration on different paths. Benefits “We took advantage of modeFRONTIER software solution to automatically execute a huge number of simulations and evaluate thousands suspension system designs within few weeks. The Parallel Coordinate Chart enabled us to easily plot several variables and visualize the distribution of the designs in an effective manner. The optimization process led us to achieve up to 10% reduction in cab vibration compared to the baseline. Moreover, the results achieved with modeFRONTIER allowed us to identify specific properties of dampers, springs and bushes that have been considered during the prototype phase of the IVECO S-WAY truck development” said Andrea Morello, Performance Engineer and CAE Senior Analyst, IVECO - CNH Industrial.
Turn data into valuable insights with VOLTA Advisor
Turn data into valuable insights with VOLTA Advisor. The advanced post-processing tool equipped with web-based interactive charts enables you to make informed decisions. Handle thousand of data with a wide array of easy-to-use web-based analytics and visualization tools. Filter out information and prepare reports with multiple interactive and synchronized dashboards. Quickly compare the effectiveness of the optimization strategy and decide on design solutions.
White paper
Optimizing the Manufacturing Process to Make Robust Decisions and Reduce Uncertainty
In today’s Industry 4.0-driven market, companies strive to offer the most competitive and valuable solutions while being efficient and reducing costs. Unlocking the advantages of digital transformation is key to face these challenges. Through production process optimization, manufacturers can improve their decision making process to enhance efficiency and quality, while reducing costs and uncertainty. As a case study, this white paper illustrates how out ESTECO technology helped optimize a computer assembly line by: increasing profitability, total throughput and same-day shipment, minimizing work-in-progress, subject to a maximum allowed limit on staff utilization.
Cloud-based optimization of mixer design for Urea/SCR aftertreatment systems
This webinar explains how modeFRONTIER was used to drive CONVERGE in the optimization of a Urea/SCR flapper-type mixer. Meeting NOx (NO + NO2) emissions regulations with aftertreatment system designs that are both effective and economical is critical to successful product performance. The favored approach to satisfying NOx emissions regulations in heavy- and light-duty diesel vehicles is to use a Selective Catalytic Reduction (SCR) device where ammonia catalyzes to reduce NOx. Current industry trends are moving to more compact integrated Urea/SCR systems, which increases the need for an optimum mixer design that may be difficult to achieve with traditional design approaches. ESTECO and Convergent Science during the webinar demonstrate how combining fast and accurate CFD simulation with effective multi-objective optimization of the geometry has the potential to substantially improve the mixer designs and produce high levels of NOx reduction without a substantial backpressure penalty.
Autonomous Optimization - Discover VOLTA platform new release
This webinar presents the latest features of VOLTA and modeFRONTIER coming with 2019R1. This includes Autonomous Optimization mode, advanced collaborative data intelligence capabilities, new RSM tool and machine learning algorithms. VOLTA platform simplifies the simulation process, enabling teams to concurrently compare, validate and collaboratively decide on design solutions with advanced data intelligence tools. Also, its process automation and optimization driven design technology allows to automate every sort of simulation process, integrate with any solvers, run intelligent algorithms, as well in autonomous mode, and pick the right design. Watch it now to learn more how VOLTA and modeFRONTIER 2019R1 capabilities make the work of engineering design smooth as never before.
Success story
High-Rise Office Building achieves zero energy use with optimization-driven design technology
Evangelia Despoina Giouri, MSc graduated from the Faculty of Architecture and the Built Environment of Delft University of Technology, used modeFRONTIER to assess the energy performance and thermal comfort towards zero energy high-rise buildings. ## Challenge Currently, 40% of the European Union’s final energy consumption and 36% of greenhouse gas emissions are attributed to buildings. New strategies to design nearly Zero Energy Buildings (nZEBs) are essential to meet climate targets set by the European Energy Performance of Building directive. This research applies process automation and optimization technologies to develop a new integrated simulation methodology to design nZEBs in a Mediterranean climate. This concept has been applied to a high-rise office building featuring photovoltaic panels integrated into the facade walls, located in the hot-dry climate of Athens, Greece. ## Solution The goal is to define which construction parameters have the highest impact on annual energy demand and thermal comfort in the building. The simulation process was created in modeFRONTIER workflow coupling Rhino/Grasshopper modeling environment and EnergyPlus software to simulate energy consumption and daylight illuminance levels. Two optimization runs have been executed to investigate the influence of building parameters that can have a contradictory impact on cooling, lighting, heating energy loads, and four different facade orientations. ## Benefits The genetic algorithm NSGA-II allowed performing 1000 evaluations in order to find the trade-off solutions for several design issues affecting energy performance and thermal comfort levels. “We were able to achieve 33% reduction on annual building’s energy consumption (from 109.12 kWh/m2 to 73.13 kWh/m2) compared to standard data provided by the current Greek legislation. Moreover, modeFRONTIER engineering and data intelligence capabilities enable us to visualize optimization trends and perform sensitivity analysis to assess the impact of the various facade parameters on the energy use and adaptive thermal comfort performance of the building” said Evangelia Despoina Giouri, MSc graduated from the Faculty of Architecture and the Built Environment of Delft University of Technology.