Webinar
AI-Accelerated Aircraft Design Optimization with nTop, Luminary Cloud, and ESTECO
Watch and learn how to accelerate aircraft design optimization by combining parametric modeling, Physics AI, and multidisciplinary design optimization (MDO) in a unified automated workflow.
eBook
The path to faster, smarter automotive design
Accelerate vehicle design processes with ESTECO’s digital engineering solutions for multidisciplinary design optimization, AI data-driven modeling and simulation data management.
White paper
Enriching PLM’s Landscape with Multi-Physics Simulation Processes and Data
The use of simulations across the product lifecycle has been growing over the years. However, simulation artifacts have largely remained siloed in separate systems in design, testing, and validation workflows. Even proper organization of the data is lacking in most organizations.
All resources
Showing 51 - 60 of 129 resources
Success story
American Magic perfects AC75 design for the 36th America's Cup
The America’s Cup isn’t just the first sailing competition in history, it’s also the first when it comes to innovation. Learn how American Magic engineers partnered with ESTECO to prepare for their next challenge. Using modeFRONTIER in different phases of the design process, they integrated geometry changes, performed hydrodynamic CFD simulations and explored different optimization strategies. ## New design challenges: monohulls that fly
The America’s Cup is the oldest and most important trophy in sailing. What makes it unique is that the reigning champion gets to decide the rules for the next edition, like the date and the location. More importantly, it defines boat class and design rules.
The 33rd America’s cup in 2010 pushed the boundaries of boat design by introducing new technologies, design concepts and materials. When BMW Oracle pitted its 34-meter trimaran and 55-meter high rigid wing against Alinghi in the first regatta, it won by 15 minutes, sailing at more than 18 knots in 8 knots of wind. The 36th America’s Cup builds on changes to previous edition class rules with a new boat concept: a monohull racing boat that doesn’t sacrifice the concept of flying boats. Two t-shaped side foils guarantee that the boat flies above the water. Engineers can’t rely on previous experience and now find themselves having to design a completely new boat. Moreover, competition rules allow teams to design only certain parts of the boat, like foil wings, sails, hulls and systems, while others must be designed by third parties. Whereas the foil wing structure and profile can be designed by teams, the arm structure is determined, designed, and built by a supplier company.
American Magic is using ESTECO technology in each phase of the design process, from concept to the refinement of foils and sails. Specifically it uses modeFRONTIER. Its process automation, intelligent algorithms and advanced post-processing capabilities enable engineers to deliver optimized solutions faster. ## Complex simulation studies on foil and mainsail geometries
The AC75 has two t-shaped side foils. The arm is attached to the hull with a moving joint which allows the crew to move the foils in and out of the water according to the sailing mode. On the other end of the arm is the foil itself. The foil has a main airfoil profile section coupled with moving flaps. Internally, enough space must be guaranteed for the systems to operate the flaps. Foil design is challenging because it involves the simulation of myriad geometries in different configurations and under multiple operating conditions - all of which determine boat performance. Foils need to create low drag but generate enough force to enable the boat to lift at the start and fly during the race. Righting moment is required to balance the heeling moment of the sails. At higher speeds, cavitation can cause significant loss in performance. Stability is fundamental, especially during maneuvers.
In the first stage, hydrodynamic performance is computed using a low-fidelity solver that takes into account the different operating conditions - namely speed, sailing mode and position in the water. In the second stage, the full 3D geometry is designed and evaluated using CFD simulations. High-fidelity simulations can’t be used directly in the first stage of development due to lengthy computational times. The sail plan is composed of the mainsail and a jib or code zero, which are interchangeable. All dimensions are restricted by rules, so engineers can optimize the shape within specific limits. The mainsail is a twin skin sail that acts like an airfoil. By adjusting mast rotation, twist and boom position, the 3D geometry of the mainsail can be tuned for different wind speeds and sailing modes foils, the aerodynamic forces are tuned to generate lift, maintaining momentum and low drag. ## Getting foil and sail design just right
American Magic engineers are using several simulation software for the foil and sail design which consists of three steps: geometry definition, force computation and boat speed estimation. The entire process is automated in modeFRONTIER. Multiple workflows handle input modifications, the execution of different tools and file and data exchange.
Mares, developed by Airbus, handles the geometry generation of the airfoil and the flap, considering different combinations. Hydrodynamic forces generated by the foil, lift, drag and momentum, as well as cavitation speed are obtained through CFD simulations. The designers use a low fidelity 1D potential-based code in the initial phases to evaluate multiple configurations in a small amount of time. American Magic uses a RANS-based tool to perform high fidelity 3D simulations in the final refinement and optimization phase. Both Mares and the CFD tools are coupled with modeFRONTIER using Easydriver nodes. This enables them to couple their in-house tools using input and output files and customize execution scripts. Geometry consistency is guaranteed by constraints that filter out weird shapes and meet requirements for internal cabling and mechanisms as well as cavitation limits.
The main goal of the optimization is to minimize drag for specific lift values. It isn’t enough to understand the efficacy of a foil shape. It’s important to understand how the boat behaves. An in-house Velocity Prediction Program (VPP) software estimates the overall boat performance at different wind speeds and sailing modes. The software uses forces generated by foils and sails to find the overall boat equilibrium and predict boat velocity. A nested modeFRONTIER workflow handles different operating conditions. These are sequentially run, using internal loops to compute the global performance of the design. Multiple operations are handled in parallel to make the most of computational resources. Once the forces are solved, these are passed on to the VPP calculation. Foil and sail design share most of the process and simulation tools but defining the geometry is more complex. The mainsail is divided into several sections where each section can have a different shape based on input values. On top of this, optimal adjustments for every shape need to be calculated. This results in large numbers of configurations which are run to find the best design. It’s fundamental to formulate constraints based on maneuverability, considering adjustments that are feasible for the crew - optimal solutions have no meaning if they are too complex to be performed during the race.
Each design phase requires a different optimization strategy. In early stages, genetic algorithms guarantee robustness to find the global optimum in a large design domain. In the last phase, it’s important to cut optimization time - conventional techniques aren’t feasible. Therefore, multi-strategy algorithms are used in combination with advanced initialization techniques to speed up the whole optimization process. ## American Magic and ESTECO - partners in innovation
The American Magic design team relied on ESTECO technology in the design and optimization of the boat. Paolo Motta, Performance Prediction Engineer says, “The AC75 is a complex racing boat with interacting subsystems. This makes the design process a challenging and time-consuming task. Using modeFRONTIER process automation, intelligent algorithms and decision making capabilities enables us to decrease foil optimization time from 3 weeks to 4 days. This gives us time to discuss and think about present challenges and develop new solutions”. According to Arthur Rozand, Performance Prediction Engineer, “The key benefit of using modeFRONTIER is to have a suite of tools in one place. In this way it’s easy to manage design and optimization from the exploratory phase to post-processing and decision making. Time is a constraint in development. With modeFRONTIER, we have the flexibility to tailor the strategy. For example, in the early stages of development, DOE strategies and the sensitivity analysis tool help us understand which design variables are the most important. In the final stage of development we use multi-strategy algorithms and advanced charts to select the best design.” “Our partnership with ESTECO is bringing in great results.” says Giorgio Provinciali, Velocity Prediction Program (VPP) Lead, “Working side-by-side with ESTECO engineers enables us to pool our respective expertise to get the most out of modeFRONTIER”.
Webinar
Optimizing kinematics and compliances of vehicle suspension using Adams Car and modeFRONTIER
This webinar presents a methodical way of optimization of Kinematics and Compliances (K&C) performance by linking the models developed in Adams Car with modeFRONTIER for end to end process automation and numerical optimization.
Experts from ESTECO and MSC Software explain vehicle suspension systems which are made up of many components including springs, dampers, bushings, hardpoints, etc. Each of these components plays a critical role in Kinematics and Compliances (K&C) of suspension systems. Manually evaluating K&C of a system is also a tedious task considering multiple number of events that must be considered i.e. parallel wheel travel, roll, etc. Thanks to ESTECO's design optimization and simulation process integration and automation technologies, the coupling of Adams Car and modeFRONTIER accelerate and ease the process, leading to an optimal combination of these parameters which results in the desired K&C results for all events.
Webinar
Ensuring product performance with Robust Optimization and Quality Engineering technology
This webinar presents how modeFRONTIER robust and reliability-based optimization capabilities can be applied to avoid opting for designs that perform well on paper, but under-perform in real life.
Danilo Di Stefano (Product Manager) and Alberto Clarich (Technical Manager) introduce the Quality Engineering module available in modeFRONTIER. They present how robust and reliability-based optimization can be applied to leave out designs that perform well on paper, but under-perform in real life. Quality Engineering allows to perform a robust analysis in those cases where the variable is affected by a non-probabilistic deviation, or noise.
Agenda:
ROBUST DESIGN & RELIABILITY - Manage uncertainties with ESTECO technology
QUALITY ENGINEERING - A new Robust Design method available in modeFRONTIER
modeFRONTIER PLANNER - A modular interface to set-up design exploration, optimization and robust design campaigns easier
Webinar
Fundamentals of Response Surface Modeling
This webinar explains how to create a response surface or mathematical model that can be used to predict the results of a new set of experiments, without having to execute those experiments.
This technique is especially useful for computationally expensive simulations such as 3D FEA or CFD, where runtimes of hours or even days can be reduced to seconds.
Watch this webinar and learn more about the importance of response surface modeling in simulation based design, the various algorithms and strategies of implementation.
Webinar
Getting started with parametric optimization
This webinar showcases how to perform Parametric Optimization in modeFRONTIER.
Parametric optimization is a computer algorithm driven automated process that modifies the problem parameters to find the optimum, or Pareto set of optimums, within a predefined design space, taking objectives and constraints into account. This iterative method allows simulation based design processes to be driven to achieve predefined targets, or to minimize or maximize certain performance characteristics.
Watch this webinar and learn more about the importance of parametric optimization, the different algorithms used, strategies and some representative industrial cases.
Webinar
Server-based MDO using an SPDM framework
This webinar demonstrates the benefits of a server-based Multidisciplinary Design Optimization (MDO) approach and Simulation and Process Data Management (SPDM).
With a server-based approach, large MDO workflows can be easily managed and collaboration can be stimulated through a modern web interface which is accessible anytime, anywhere. On the execution side, a server-based approach offers many advantages related to distributed execution enabling hybrid compute infrastructures.
SPDM is an important aspect of server-based MDO since it manages the ownership, version control and permissions of all the data and models needed to build and execute complex workflows. With SPDM, MDO becomes a team effort instead of an ‘expert-only’ exercise. Workflows can be quickly upgraded or rolled back to a known state, simplifying the debugging and editing process.
Webinar
Accelerate aircraft design with model-based design automation and collaborative MDO
This webinar hosted by ESTECO and TXT company PACE, demonstrates the added value of combining their technologies for a server-based optimization of an EXPEDITE (EXPanded MDO for Effectiveness Based DesIgn TEchnologies) derived preliminary aircraft design.
Taking an EXPEDITE-like modern aircraft conceptual design as a baseline, the webinar showcases the advantages of creating a smart, reconfigurable aircraft model with PACE's preliminary aircraft design platform Pacelab APD and integrating it in modeFRONTIER parametric optimization to identify the optimum solutions, based on constraints and performance requirements.
Watch this webinar and learn more about how to implement this methodology in an international context, consisting of distributed teams and the extended enterprise.
Webinar
Enhancing the design process in biomedical industry with engineering optimization
This webinar explores the possibilities of the use of modeFRONTIER and DEP MeshWorks to accelerate the design process in the biomedical field.
Medical devices community needs to adopt faster go-to-market strategies to go from conceptual design to market deployment. Virtual engineering and virtual testing become one of the key factors that enable this speed of development. Engineering simulation enables design, development, and analysis of these complex medical devices with great accuracy. Mathematical techniques such as numerical optimization and machine learning further enhance the design process by allowing the identification of robust and optimal solutions in a short time.
ESTECO North America and Detroit Engineered Products (DEP), specialized in model parameterization, explain the value of optimization and response surface modeling in simulation-based medical device development.
White paper
A new collaborative MDO strategy for improving vehicle design at Ford Motor Company
The role of innovation in the automotive industry has emerged as a key factor, with companies shifting their revenues from well-established models to new ones.
This white paper illustrates how Ford Motor Company achieved streamlined, multi-user design process management by expanding its Multidisciplinary Design Optimization (MDO) approach at enterprise level with the ESTECO technology.
Specifically, the deployment of the ESTECO platform for Simulation Process and Data Management (SPDM) made it possible for Ford engineers to:
process and generate large quantities of designs very quickly,
assure the immediate impact of results on vehicle design from the earliest design stages,
provide a wealth of data from which several useful design alternatives could be explored.
Video
ESTECO Technology: autonomous design space exploration
Whether you need to start understanding your engineering problem or you work under strict timelines, you can embrace our AI-based Autonomous Optimization approach and focus on the improvement you want to reach without any setting required.


