Unlocking innovation in Aerospace and Defense

Shorten aircraft design cycles with ESTECO’s digital engineering solutions for collaboration, simulation data management and multidisciplinary design optimization.


ESTECO VOLTA: the game-changer for SPDM & collaborative Design Optimization

Listen to a 30-minute deep dive into our software solution VOLTA SPDM and explore how to enhance your product performance.

Filter by type and industry

All resources

Showing 11 - 20 of 121 resources

Server-based MDO using ESTECO VOLTA SPDM platform
Discover more about the server-based MDO using ESTECO VOLTA SPDM platform applied to different case studies.
Getting started with parametric design optimization in modeFRONTIER
Solve complex MDAO studies in a fraction of the time using a validated advanced panel method
ESTECO and Research in Flight showcase the optimization of a propeller geometry to meet stakeholders' goals in a complex, changing environment. In this joint webinar, ESTECO and Research in Flight showcase the optimization of a propeller geometry to meet stakeholders' goals in a complex, changing environment of multiple competing requirements and key performance metrics. This webinar demonstrates how this class of problem can be addressed by combining ESTECO's efficient server-based approach to Multidisciplinary Design Analysis and Optimization (MDAO) technology with Research in Flight's state-of-the-art, versatile, fast, and powerful aerodynamic analysis tools. Agenda: Overview of ESTECO and Research in Flight Case study: the optimization of a propeller geometry to meet stakeholders' goals in a complex, changing environment of multiple competing requirements and key performance metrics. FlightStream Problem Setup/Definition VOLTA Problem Setup/Definition Optimization results and conclusions
From task-oriented to process-oriented approach with VOLTA Business Process Management
With our business process management technology, companies can map, formalize and execute simulation-driven product development processes, maximizing the enterprise-wide flow of engineering data. Information flows across domains, reaching the right people at the right time and minimizing effort and productivity bottlenecks.
ESTECO Technology: for innovators by innovators
ESTECO is an independent software company, highly specialized in numerical optimization and simulation process and data management. The company relies on a sound scientific foundation and embraces a flexible approach to meet customer needs. ESTECO offers innovative and flexible solutions to safely create, capture and cultivate engineering knowledge and address the challenges of digital transformation.
Validate automotive design, autonomous and e-mobility system with ESTECO Technology
Automotive engineers can benefit from our software solutions ESTECO VOLTA and ESTECO modeFRONTIER to innovate the simulation-driven product development and achieve better vehicle designs with increased performance at reduced production costs.
ESTECO Technology: reach new heights in the aerospace industry
Engineers are under pressure to develop revolutionary aircraft faster and cheaper. ESTECO Technology’s new approach to digital engineering is critical for staying competitive and embracing a cultural shift. It brings technology, processes and people together.
Interview with the engineers of the Luna Rossa Prada Pirelli boat for the 37th America’s Cup
As the Luna Rossa Prada Pirelli prototype was getting ready to sail the waters of Cagliari, Italy, we took a moment to interview Matteo Ledri, Head of CFD, and Andrea Vergombello, VPP and CFD Optimization of the Luna Rossa Prada Pirelli Team.
Success story
Balancing multiple disciplines to design adaptable and sustainable buildings
Bouygues Construction develops innovation to support companies with new construction methods and materials, while considering future usages. The main requirements for a new construction include objective measures, flexibility, industrialization, collaboration and sustainability. Moreover, customers also ask for innovative and evolving buildings. Bouygues keeps developing innovative processes together with a collaborative Multidisciplinary Design Optimization (MDO) platform, which allows the various actors involved in the project to make quicker decisions and have a crystal clear overview of the possible solutions. Cover image: courtesy of Bouygues Construction | Morpheus Hotel | credit photo Virgile Simon Bertrand (2018) Challenge A building is a prototype that is manufactured once. It’s not a functional project like a car or an airplane, where a design process can be profitable thanks to the sales volumes involved. On top of this, a building is created on site with local resources and labour, as well as environmental challenges that need to be taken into account. Engineers have to mix different disciplines such as cost engineering, methods, structure (reinforce concrete, steel, timber etc.), and building life cycle. Bouygues Construction had to take into consideration a variety of disciplines and variables to optimize building performances and propose the most adapted design to its client. ## Solution Bouygues has automated the design process of a building floor with modeFRONTIER, considering 26 input parameters such as geometry, solutions, usage specifications, structural dimensions, unit prices, and unit times of construction. The outputs were the costs, construction pace, carbon footprint. Within the VOLTA collaborative platform, engineers succeeded in implementing different construction designs and provided the most profitable and the most sustainable solutions to the building team. This was possible thanks to the seamless integration of the simulation tools currently deployed at Bouygues. This was performed in as little as two days with one engineer. “The good software is the one the designer knows and masters - explained Sylvain Géry, Senior Structural Engineer at Bouygues Construction - ESTECO Technology can easily integrate with any simulation solver. This helps when a project involves different countries and enterprises who are used to working with different tools”. Benefits Thanks to the ESTECO Technologies for process automation, design optimization and simulation data management, Bouygues fastened the simulation process and reduced the overall design project time. Engineers built multidisciplinary processes and effectively coordinated all the phases involved. They could also assess the final design performance while considering costs and carbon footprint. Moreover, the collaboration between experts from different areas and the traceability of the simulation model evolution simplified the management of the project. In the building industry there are many construction options available. “Thanks to MDO, - Géry said - we could objectively quantify the benefits of the various construction types and identify the most appropriate combination of material usage, material technology and construction workers costs.”
Success story
Pipistrel: flying straight from simulation to production
The ESTECO optimization technology as a way to skip any prototype phase for a hybrid-electric aircraft propeller Pipistrel, an aviation & aerospace company based in Slovenia, relied on ESTECO Technologies to design the propeller for a highly efficient, hybrid-electric aircraft. The work was part of the EU-funded project MAHEPA (Modular Approach to Hybrid Electric Propulsion Architecture), that had the aim of advancing two variants of a low emission, serial hybrid-electric propulsion architecture to TRL (Technology Readiness Level) 6. The modeFRONTIER process automation and optimization software allowed automation in the simulation process and identification of innovative and optimized designs in a limited time. Challenge Engineers at Pipistrel had the challenge to design a propeller, driven by hybrid-electric propulsion system taking into account the different conditions the aircraft meets during the four flight phases: takeoff, climb, cruise and descent. Considering speed, power and thrust requirements changing during the flight, the objective was to maximize takeoff thrust and recuperation power during descent and minimize power during climb and cruise phase. The optimization involved three stages: the preliminary propeller optimization, the airfoil optimization, and the final propeller optimization. ## Solution For this multi-phase optimization project, Rok Lapuh and David Eržen, aero-dynamics engineers at Pipistrel, used modeFRONTIER coupled with CHARM (Comprehensive Hierarchical Aeromechanics Rotorcraft Model) and XFOIL, an interactive program for the design and analysis of subsonic isolated airfoils. Benefiting from the ESTECO process automation technology, Pipistrel could automate the simulation workflows, simultaneously evaluate thousands of designs and identify innovative optimized results. This process was conducted in a fully autonomous way leaving Pipistrel’s engineers the task to select the most appropriate design. With the first propeller optimization, Pipistrel optimized the chord and twist distribution to get the maximum thrust and minimum power for a given set of airfoils. The results were then used as requirements for the airfoil optimization. The design team used modeFRONTIER to design the airfoil under specific geometry constraints (thickness, cur- vature or leading-edge radius), while increasing the lift and reducing the drag. They started a Design of Experiments phase and then used the HYBRID genetic algorithm to successfully run the airfoil optimization and get the Pareto front with the optimal designs. At last, they used the optimum airfoil for the final propeller optimization. With the ESTECO optimization algorithms, engineers at Pipistrel could evaluate almost five thousand designs in a limited time and increase the thrust by 30% during takeoff. ## Benefits Before using modeFRONTIER, Pipistrel went through a manual process to simulate multiple designs and choose the preferred one. With the introduction of ESTECO Technology, Pipistrel engineers not only were able to automate this process, but could evaluate options not considered otherwise. “modeFRONTIER optimization technology gave me the opportunity to think outside of the box - said Rok Lapuh, Aerodynamics Engineer at Pipistrel - We could find a design that is completely different from what we’re used to, but that may work even better”. They also dramatically reduced the go-to-market time as they moved from simulation directly to the production. “We trust the results we get with modeFRONTIER so much that we don’t expect we’ll require a prototype - said David Eržen, Aerodynamics Engineer at Pipistrel - We go straight into production”.