Unlocking innovation in Aerospace and Defense

Shorten aircraft design cycles with ESTECO’s digital engineering solutions for collaboration, simulation data management and multidisciplinary design optimization.


ESTECO VOLTA: the game-changer for SPDM & collaborative Design Optimization

Listen to a 30-minute deep dive into our software solution VOLTA SPDM and explore how to enhance your product performance.

Filter by type and industry

Search results

Showing 11 - 20 of 46 results

Getting started with parametric optimization
This webinar showcases how to perform Parametric Optimization in modeFRONTIER. Parametric optimization is a computer algorithm driven automated process that modifies the problem parameters to find the optimum, or Pareto set of optimums, within a predefined design space, taking objectives and constraints into account. This iterative method allows simulation based design processes to be driven to achieve predefined targets, or to minimize or maximize certain performance characteristics. Watch this webinar and learn more about the importance of parametric optimization, the different algorithms used, strategies and some representative industrial cases.
Server-based MDO using an SPDM framework
This webinar demonstrates the benefits of a server-based Multidisciplinary Design Optimization (MDO) approach and Simulation and Process Data Management (SPDM). With a server-based approach, large MDO workflows can be easily managed and collaboration can be stimulated through a modern web interface which is accessible anytime, anywhere. On the execution side, a server-based approach offers many advantages related to distributed execution enabling hybrid compute infrastructures. SPDM is an important aspect of server-based MDO since it manages the ownership, version control and permissions of all the data and models needed to build and execute complex workflows. With SPDM, MDO becomes a team effort instead of an ‘expert-only’ exercise. Workflows can be quickly upgraded or rolled back to a known state, simplifying the debugging and editing process.
Fundamentals of Response Surface Modeling
This webinar explains how to create a response surface or mathematical model that can be used to predict the results of a new set of experiments, without having to execute those experiments. This technique is especially useful for computationally expensive simulations such as 3D FEA or CFD, where runtimes of hours or even days can be reduced to seconds. Watch this webinar and learn more about the importance of response surface modeling in simulation based design, the various algorithms and strategies of implementation.
Accelerate aircraft design with model-based design automation and collaborative MDO
This webinar hosted by ESTECO and TXT company PACE, demonstrates the added value of combining their technologies for a server-based optimization of an EXPEDITE (EXPanded MDO for Effectiveness Based DesIgn TEchnologies) derived preliminary aircraft design. Taking an EXPEDITE-like modern aircraft conceptual design as a baseline, the webinar showcases the advantages of creating a smart, reconfigurable aircraft model with PACE's preliminary aircraft design platform Pacelab APD and integrating it in modeFRONTIER parametric optimization to identify the optimum solutions, based on constraints and performance requirements. Watch this webinar and learn more about how to implement this methodology in an international context, consisting of distributed teams and the extended enterprise.
Enhancing the design process in biomedical industry with engineering optimization
This webinar explores the possibilities of the use of modeFRONTIER and DEP MeshWorks to accelerate the design process in the biomedical field. Medical devices community needs to adopt faster go-to-market strategies to go from conceptual design to market deployment. Virtual engineering and virtual testing become one of the key factors that enable this speed of development. Engineering simulation enables design, development, and analysis of these complex medical devices with great accuracy. Mathematical techniques such as numerical optimization and machine learning further enhance the design process by allowing the identification of robust and optimal solutions in a short time. ESTECO North America and Detroit Engineered Products (DEP), specialized in model parameterization, explain the value of optimization and response surface modeling in simulation-based medical device development.
Cloud-based optimization of mixer design for Urea/SCR aftertreatment systems
This webinar explains how modeFRONTIER was used to drive CONVERGE in the optimization of a Urea/SCR flapper-type mixer. Meeting NOx (NO + NO2) emissions regulations with aftertreatment system designs that are both effective and economical is critical to successful product performance. The favored approach to satisfying NOx emissions regulations in heavy- and light-duty diesel vehicles is to use a Selective Catalytic Reduction (SCR) device where ammonia catalyzes to reduce NOx. Current industry trends are moving to more compact integrated Urea/SCR systems, which increases the need for an optimum mixer design that may be difficult to achieve with traditional design approaches. ESTECO and Convergent Science during the webinar demonstrate how combining fast and accurate CFD simulation with effective multi-objective optimization of the geometry has the potential to substantially improve the mixer designs and produce high levels of NOx reduction without a substantial backpressure penalty.
Autonomous Optimization - Discover VOLTA platform new release
This webinar presents the latest features of VOLTA and modeFRONTIER coming with 2019R1. This includes Autonomous Optimization mode, advanced collaborative data intelligence capabilities, new RSM tool and machine learning algorithms. VOLTA platform simplifies the simulation process, enabling teams to concurrently compare, validate and collaboratively decide on design solutions with advanced data intelligence tools. Also, its process automation and optimization driven design technology allows to automate every sort of simulation process, integrate with any solvers, run intelligent algorithms, as well in autonomous mode, and pick the right design. Watch it now to learn more how VOLTA and modeFRONTIER 2019R1 capabilities make the work of engineering design smooth as never before.
Incorporating manufacturing cost into engineering optimization
This webinar presents the successful integration of aPriori cost data technology in the modeFRONTIER workflow in order to investigate a wide selection of manufacturing options quickly. Manufacturing cost is a critical component to finding the best possible design when completing engineering optimization. This webinar demonstrates how to leverage modeFRONTIER capabilities to coordinate a parametric optimization that includes all the performance requirements plus manufacturing cost with aPriori. Watch it now to learn how: Automate your costing activities in engineering workflows Find multiple design alternatives meeting performance and cost targets Select the best alternative from the set for moving forward Compare the old and new design to understand the overall savings Find the best cost decision throughout the design process
Lockheed Martin overview of the AFRL EXPEDITE program and the role of ESTECO Technology
This webinar presents an overview of the EXPEDITE Program and the role ESTECO technology will play in order to advance Multi-disciplinary Analysis and Design Optimization (MADO). In 2017 Lockheed Martin Aeronautics Advanced Development Programs (ADP - The Skunk Works) was the winner of the US Air Force Research Laboratories (AFRL) Multi-Disciplinary Science and Technology Center EXPEDITE program. EXPEDITE (EXPanded MDO for Effectiveness Based DesIgn TEchnologies) is a successful program by AFRL seeking to advance the state-of-the-art of Multi-disciplinary Analysis and Design Optimization (MADO) as applied to US Air Force programs. For EXPEDITE the primary thrusts for the program include path and state-dependent design to capture discipline transients, HPC and higher fidelity physics to support Uncertainty Quantification (UQ), and expanding conceptual design down through Operational Analysis to support Effectiveness Based Design. Watch the webinar to learn more about EXPEDITE program, ESTECO’s role in achieving the AFRL objectives, and progress to date (July 2018).
Simulation & Digital Twins | Metamodeling approach to the digital transformation
This seminar focus on how metamodelling techniques speed up the search for promising designs by replacing computationally expensive design evaluations or simulations. In 2018, ESTECO joined this NAFEMS Web Seminar talking about how metamodelling techniques provide a global model of some design response, which can then be optimized efficiently. As, in the context of digital transformation, simulation is expected to spread all over the product lifecycle, metamodelling techniques too will be requested to adapt to different types of data and to exploit different types of predictive capabilities.